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Radiation effects on Detectors and 
Electronics

Outline
• Radiation types and effects on silicon
• Radiation effects in detectors (bulk effects)
• Radiation effects on electronics

– Bipolar
– CMOS
– SOI

• Single event effects
• Practical Considerations

My point of view – not an expert but a victim
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Radiation types

• Radiation
– Electromagnetic (γ, β, x-ray). 

• Ionization, e-hole pair creation.
– Hadronic (n, π, p). Damage to the bulk 

material caused by displacement of atoms  
from lattice sites in addition to ionization

• Electronics are affected primarily by ionization
– Charge buildup in insulating layers
– Charge injection into sensitive nodes

• Sensors are affected by bulk  damage and 
ionization
– Crystal structure damage
– Introduction of  traps
– Introduction of mid-band states

Ref 1.
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Displacement Damage in Silicon

• Displacement of atoms in the crystal lattice
– Described by displacement damage (MeV mb) or Non Ionizing 

Energy Loss (NIEL - keVcm²/g) in the material
– For silicon 100 MeV mb = 2.144 keV cm2/g
– Typically scaled to NIEL values  for 1 MeV neutrons for various 

types, energies
– Pattern of damage clusters depends 

on particle type and energy
• NIEL scaling not always valid
• Differences between neutrons, 

protons, and pions can be significant 
– Damage leaves vacancies (empty 

lattice sites) and interstitials
• These can be electrically active
• Charge traps
• Leakage current sources
• Combine with oxygen and other  impurities
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Production of Vacancies and 
Interstitials

particle Si s
Vacancy + Interstitial

 Point Defects (V-V, V-O .. ) clusters

EK > 25 eV EK > 5 keV

Frenkel pair V
I

 charged defects 
  ⇒ Neff , Vdep

e.g. donors in upper 
and acceptors in 

lower half of band 
gap

 generation
 ⇒  leakage current

Levels close to 
midgap

 most effective

Trapping (e and h)
⇒ CCE

shallow defects do not 
contribute at room 

temperature due to fast 
detrapping 

Ref 2.
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Simulation of 25 KeV recoil SRIM Simulation
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Radiation effects on Detectors

• HEP silicon detectors used at the Tevatron and LHC are primarily 
affected by bulk damage.  Associated electronics are affected by 
primarily by ionization damage.

• Detectors are unique
– Lightly doped silicon
– Thick structures
– Regular array of electrodes

• Several different bulk effects:
– Increase in leakage current
– Changes in doping concentration
– Increased charge trapping

• All of these depend on time and temperature, sometimes in 
complex ways.
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Effects - Leakage current

• Most obvious effect is an increase 
in device leakage current

– Almost universal effect
• Dependent on NIEL
• Independent  of silicon 

resistivity and doping
– Temperature dependent

– There is a strong annealing 
effect 

 80 min 
60°C

annealing

H. Aihara et al.
Phys. Rev. Lett.,
61 (1988)1263

Ref 3.
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Effects - Space Charge Inversion

• SSC- era studies discovered an unusual 
effect detectors became more p-type with 
radiation exposure

• Two effects -  donor removal and 
acceptor creation

• This effects limits the lifetime of 
detectors in high radiation environments.
– Device becomes more p-type
– Depletion voltage goes up
– Detector eventually breaks down or draws too much current

• Very carefully studied by LHC groups, which also explored variations 
in silicon geometry and doping to reduce the problem
– Oxygenated silicon
– Increase breakdown voltage by design
– Single sided detectors

• Complex annealing behavior

…. with particle fluence
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Annealing effects

• Short term: “Beneficial annealing” 
• Long term: “Reverse annealing”

– time constant depends on temp:
                ~ 500 years (-10°C)  
                ~ 500 days ( 20°C)
                ~  21 hours ( 60°C)

– Detectors must be cooled even when
 the experiment is not running! 

Donor
removal

Acceptor
creation

Beneficial
annealing

Reverse
annealing



May 6, 2008 Ronald Lipton
10

Defect Characterization 

• RD 48 and 50 has had an ongoing 
program to understand and
characterize radiation-induced 
defects
– Engineered dopants (oxygen, 

carbon …)
– Different materials

• Magnetic Czochralski
• Epitaxial silicon
• Diffusion oxygenated float zone (DOFZ)

• Various beams (pion, proton, neutron)
• Results:

– Oxygenation retards reverse annealing
– MCZ does not undergo type inversion (original diode remains)
– Epitaxial silicon similar to MCZ

Ref 17



May 6, 2008 Ronald Lipton
11

Trap Characterization 

• Deep Level Transient Fourier 
Spectroscopy (DLTFS) and 
Thermally Stimulated Current 
(TSC) techniques
– “I” and “Γ“ defects differ with

oxygen content
– I defect identified with much 

of the space charge inversion
effect

• Identification of DLTS states with
specific defects difficult
– I is probably V2O

• Picture changes with cluster 
generating radiation, material

• Understanding at a basic level 
much better, but work ongoing Point defects in Co60 irradiation

Ref 18
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Effects - Charge Trapping
• Particle detectors typically collect 

charge from a 200-300 micron 
thick substrate

• Bulk damage introduces traps 
which can intercept drifting charge.

• Effect depends on type of 
exposure 
– independent of material type 

(FZ, CZ, epi) and properties 
(std, DO, resistivity, doping 
type).

– independent of irradiating 
particle type and energy 

– only small annealing effects (as 
studied up to T = 80°C)

electrons

holes

extrapolated values

Ref 4.

€ 

300µm
vsat

≈ 3ns

€ 

τ eff ,e,h << tdrift

•   Can be reduced by reducing electrode spacing 
–Thinned detectors
–Vd~thichness2

–3D detectors with electrodes in silicon bulk.
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Sensor Design

• Charge collection may be the ultimate 
limit to silicon radiation hardness at 
sLHC
– Thinned sensors can collect as 

much charge as full thickness 
sensors at high dose

– Voltage needed to deplete smaller 
(~t2)

– Smaller leakage current
– Larger internal fields
– Can use techniques from SOI and 

commercial thinning processes
• Can adapt deep reactive ion etching 

from nanotechnology to generate 
electodes in the silicon bulk, the 
effective thickness is the electrode 
spacing
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Thinned Sensors

• Thinning techniques well 
developed in industry

• Challenge form backside 
contact without full 1000 
deg anneal

• 280 micron 6” sensor
– Mount on pyrex 

handle
– thin to 50 microns
– Backside polish
– Ion implant
– laser anneal

• Vd ~ thickness2 
90 V -> 2.8 V
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Data From D0

• Preliminary on-line data from 
D0 monitoring system

• Silicon detectors running since 
2000

annealing

D0 Layer 0 data

Layer 1 r ~ 2.5 
cm

R ~ 1.6 cm
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Radiation Effects in Electronics

• Effects vary greatly with technology
• Characterized by

– Changes in gain
– Changes in noise
– Changes in characteristics
– Sensitivity to single ionizing events

• Technologies:
– Bipolar transistors
– FETs
– Bulk CMOS
– SOI

• Bulk CMOS is most universal
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Bipolar Transistors

• Bipolar Transistors
– Damage induces mid-gap states 

as in detectors
• Traps reduce conduction 

current through the base
• Reduced gain

– Fractional change in doping due to 
radiation is small because initial 
doping is large (1016-20) compared to 
detectors (1012)

– Noise remains ~constant but s/n 
falls due to reduced gain

(Ref. 6)

Ref 5

Saturation of traps
– increased gain
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Ref 7

MOS Transistors

• Radiation generates e-hole pairs in 
insulating oxides
– Electrons are mobile and are  

removed by the gate-substrate 
field

– Holes are trapped – either in the 
bulk or by deeper traps near the 
silicon-oxide junction

– Holes can recombine with 
electrons from the silicon

– Tunneling electrons recombine 
with holes near interface

• Oxide quality and geometry is crucial 
to radiation sensitivity of CMOS
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Threshold Shifts

• Large feature size CMOS threshold 
shifts were significant for “moderate” 
doses 
– Significant dependence on 

irradiation conditions 
(temperature, bias …)

Ref 8
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Oxide Thickness
• The thin oxides inherent in 

deep submicron technology 
provide naturally radiation
tolerant transistors

• Quantum tunneling through 
the thin oxides in deep 
submicron processes drive 
the voltage shifts well below 
extrapolation from larger 
feature size technologies.

Ref 8

Jarron
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Radiation Tolerant Design

• Thin oxides reduce overall radiation 
sensitivity of deep submicron CMOS 
These transistors are surrounded by 
thicker “field oxide”, which can still 
trap charge

• This trapped charge can form a 
channel for leakage currents from 
source to drain

• Enclosed layout transistors eliminate 
this effect by using a geometry that 
does not provide a drain-source path 
path near field oxide

This is radiation hard by design

G. Anelli; PhD Thesis :

http://www.cern.ch/RD49/RD49Docs/anelli/these.html
http://www.cern.ch/RD49/RD49Docs/anelli/these.html
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APV25 0.25µm CMS Rad 

Gain

rms ADC units

noise Linearity

Ref 15
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Single event Effects

• Linear Energy Transfer (LET): 
dE/Dx of ionizing radiation. LET is typically 
expressed in units of MeV·cm²/mg of material.

• Single event upset (SEU):
Change of state of a transistor due to radiation. 
Reversible.

• Single event latchup (SEL):
Latched change of state of a circuit due to 
radiation.  May need to power cycle to reset

• Single event burnout (SEB):
Destruction of a circuit element due to radiation.
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Single Event Upset

3D Simulation of a single event in a 
CMOS transistor using Silvaco 
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Single Event Latchup

• Bulk CMOS contains parasitic bipolar 
transistors interconnected by the bulk 
CMOS substrate – forms a parasitic 
thyristor.

• Can cause burnup if not current limited
• Mitigated by:

– Thin, high resistivity epitaxial layers
– Trench isolation
– Silicon-on-Insulator (SOI) 

technology

Harris Semiconductor

Negative charge pulse lowers 
gate potential 

NASA test of 
gate array
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Single Event Burnup

• Usually in power MOS and BJT
• Transistor is off

– High potential across reverse bias junction
– Highly ionizing event deposits charge in the high 

field region
– Avalanche multiplication in the silicon causes high 

currents which are amplified in the transistor
– Junction breaks down

• NMOS more sensitive than PMOS because of larger 
avalanche multiplication for electrons
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Silicon On Insulator 

• SOI structures provide smaller 
region for charge collection – 
lower SEU cross sections

• But the “buried” oxide layer is 
sensitive to charge-up similar to 
CMOS gate oxides – sensitive to 
TID

• Led to additional dual gated 
structures

Sensitivity of 
the 68020 
microprocessor
CMOS/thick 
SOI and 
CMOS/epi 
taxial 
technologies, 

Ref 10
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Silicon On Insulator 
Structures

Front gate

Back gate

BOX
• Back “handle wafer” can be biased 
to counteract radiation-induced shifts
• Multiple gate structure to shield 
transistor channel
• Handle wafer can also be used as a 
detector
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Commercial Parts

• Deep submicron CMOS ASICs have become more TID hard as 
feature size 
shrinks
– Not true for SEE
– Diversity of process variations makes 

general statements difficult
• Parts (ASICs, FPGAs …) are reasonably easy to test for SEE and 

TID in cyclotrons and with sources
• Packaged system tests are more difficult to 

evaluate, especially if the problem is buried 
in a subsystem.

• There are extensive databases for “space qualified” parts
• But the space environment has a different character than 

accelerators (more ionizing radiation, fewer neutrons and pions)
• CERN testing program for LHC components (Ref 16)
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NASA Model (ref 14)
      Assign lead radiation effects engineer for each project

• Define the hazard

– Radiation environment

• Evaluate the hazard

– Estimate effects of TID, displacement damage
and SEE

• Define requirements

– TID safety factor of 2

– Vary requirement by system performance need

– Fluences for worst case, nominal, and peak

• Evaluate device usage
• Screen parts list wrt database

• Has process changed?
• Lot date different?
• Testing environment?

• Evaluate SEE rates
• Understand degradation of performance 

with TID Ref 14
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Conclusions

• Radiation damage is complex and multidimensional
– Detector effects reasonably well understood

• Mitigation techniques allow for ~5-10 Mrad exposures
– Basic causes and effects in electronics  have been carefully 

studied but modern electronics are a moving target
• Rapid advance of technology
• Introduction of mixed technology devices
• Changing feature size

• Test as extensively as possible
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